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A B S T R A C T

Cathepsin B is a potential target for the development of drugs to treat several important human diseases.

A number of inhibitors targeting this protein have been developed in the past several years. Recently, a

group of small molecules were identified to have inhibitory activity against cathepsin B through high

throughput screening (HTS) tests. In this study, traditional continuous and binary QSAR models were

built to classify the biological activities of previously identified compounds and to distinguish active

compounds from inactive compounds for drug development based on the calculated molecular and

physicochemical properties. Strong correlations were obtained for the continuous QSAR models with

regression correlation coefficients (r2) and cross-validated correlation coefficients (q2) of 0.77 and 0.61

for all compounds, and 0.82 and 0.68 for the compound set excluding 3 outliers, respectively. The models

were further validated through the leave-one-out (LOO) method and the training-test set method. The

binary models demonstrated a strong level of predictability in distinguishing the active compounds from

inactive compounds with accuracies of 0.89 and 0.94 for active and inactive compounds, respectively, in

non-cross-validated models. Similar results were obtained for the cross-validated models. Collectively,

these results demonstrate the models’ ability to discriminate between active and inactive compounds,

suggesting that the models may be used to pre-screen compounds to facilitate compound optimization

and to design novel inhibitors for drug development.
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1. Introduction

As members of the papain superfamily [1], cathepsins are
involved in many biological processes related to human diseases
and disorders [1–4]. Previously identified cathepsins include
cathepsin B, D, H, K, L, and S. Several of these proteins have been
selected as biological targets to develop therapeutic treatments,
and a number of inhibitors have been identified and developed for
many of these enzymes. Cathepsin B inhibitors are highly sought
after chemical agents since many diseases, such as neurodegener-
ative disorder, cardiovascular disease, cancer, inflammation,
rheumatoid arthritis, and Alzheimer’s disease [5–12], have been
connected with unusual levels or abnormal function of cathepsin B.
As an ubiquitous lysosomal cysteine proteases, cathepsin B has
been found to be responsible for intracellular as well as
extracellular proteolysis in mammalian cells and can facilitate
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cell migration by dissolving the extracellular barriers, which result
in tumor metastasis and angiogenesis [13–15]. The biological
activity and function of cathepsin B is also important during viral
infection and replication for several viruses, such as Ebola, SARS
(Severe Acute Respiratory Syndrome) in human cells [16,17]. Due
to its important biological functions, which are directly related to
several important human diseases, cathepsin B has been chosen as
a drug development target in many efforts.

A number of compounds have been found to inhibit cathepsin B
activity, and some of these compounds have been tested and are
effective in animal experiments [5–12,18–20]. Most of these
cathepsin inhibitors disable the biological activity of cathepsin B
through forming irreversible covalent chemical bond in the
catalytic site of the enzyme. These irreversible inhibitors include
dipeptidyl nitriles [21], vinyl sulfones, expoxysuccinates, acylox-
ymethyl ketones, fluoromethyl ketones, hydrazides, and bis-a-
amidoketones [22]. Structural studies have provided detailed
insights into the biological mechanisms of these inhibitors.
Inhibitors bind to the catalytic active site of cathepsin B, and
form an irreversible covalent bond with the protein in the active
site [21,23]. Meanwhile, computational studies, such as docking
and virtual screening, were also used to explore the binding and
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Table 1
The compound structure and biological activity of the active and inactive compounds from PubChem bioassay database.a.

Compd CIDb Mol. formula SMILES MW IC50

(mM)

log IC50 Active

1 286532 C18H14N2O6 o1[n+]([O–])c(C(55O)c2ccc(OC)cc2)c(n1)C(55O)c1ccc(OC)cc1 354.09 11.46 �4.941 1

2 573353 C16H12FN5O Fc1ccc(cc1)Cn1c2c(nc1–c1nonc1N)cccc2 309.10 33.86 �4.470 1

3 646525 C15H13N3O4S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccc(cc2)C)c(N)c1)55O 363.04 1.99 �5.701 1

4 646749 C18H17N3O5S S(55O)(55O)(n1nc(OC(55O)c2ccc(cc2)C)cc1N)c1ccc(OC)cc1 387.09 12.27 �4.911 1

5 647599 C14H10FN3O5S S(55O)(55O)(n1nc(OC(55O)c2occc2)cc1N)c1ccc(F)cc1 351.03 1.26 �5.899 1

6 648315 C17H14N2O3S2 s1cccc1CNC(55O)C(OC(55O)c1sccc1)c1ncccc1 358.05 6.36 �5.197 1

7 651936 C15H13N3O5S S(55O)(55O)(n1nc(OC(55O)c2occc2)cc1N)c1ccc(cc1)C 347.06 1.75 �5.757 1

8 653316 C16H18N6O2 o1nc(–c2nc3c(n2CC(55O)N2CCCCC2)cccc3)c(n1)N 326.15 44.58 �4.351 1

9 653862 C15H13N3O6S S(55O)(55O)(n1nc(OC(55O)c2occc2)cc1N)c1ccc(OC)cc1 363.05 0.92 �6.035 1

10 654815 C7H6Cl2N2O4 ClC155C(Cl)C(OC1NC(55O)NC(55O)C)55O 251.97 2.12 �5.674 1

11 655490 C17H15N3O5S S(55O)(55O)(n1nc(OC(55O)c2ccccc2)cc1N)c1ccc(OC)cc1 373.07 9.56 �5.019 1

12 658111 C17H21N3O4S S(C(OC)55O)c1nc(N2CCOCC2)c2c(CC(OC2)(C)C)c1C#N 363.13 6.72 �5.173 1

13 658152 C14H20N6O4S S(C)c1nc(nc(n1)N(C)C)N(C(C(OCC)55O)C(OCC)55O)C#N 368.13 19.69 �4.706 1

14 658724 C19H16N2O4 o1c(nc(C55Nc2ccccc2OC)c1OC(55O)C)–c1ccccc1 336.11 8.93 �5.049 1

15 658964 C20H18N2O4 o1c(nc(C55Nc2ccccc2OC)c1OC(55O)CC)–c1ccccc1 350.13 39.99 �4.398 1

16 660829 C19H12N2O5 o1c(nc(C55Nc2ccccc2)c1OC(55O)c1occc1)–c1occc1 348.08 38.47 �4.415 1

17 665480 C20H29N3O5S S(55O)(55O)(Cc1cc(ccc1)C)c1oc(nn1)[C@H](NC(OC(C)(C)C)55O)C(CC)C 423.18 2.09 �5.680 1

18 714967 C11H15N7O2 O(C)c1nc(nc(n1)N(CC(55O)N)C#N)N1CCCC1 277.13 14.20 �4.848 1

19 794694 C12H14ClNO3S2 Clc1ccc(S(55O)(55O)N2S(55O)CC(C)55C(C2)C)cc1 319.01 4.17 �5.380 1

20 971438 C18H17N5O2 o1nc(–c2nc3c(n2Cc2cc(OC)ccc2C)cccc3)c(n1)N 335.14 37.19 �4.430 1

21 1506381 C17H15N5O2 o1nc(-c2nc3c(n2Cc2cc(OC)ccc2)cccc3)c(n1)N 321.12 45.97 �4.338 1

22 2212050 C15H13N3OS S(CC)c1ccccc1C(55O)n1nnc2c1cccc2 283.08 7.11 �5.148 1

23 2998380 C16H16N2O4S3 S(55O)(55O)(N1S(55NS(55O)(55O)c2ccccc2)CC55CC1)c1ccccc1 396.03 9.39 �5.027 1

24 3236798 C16H14N6O2 O55C1N(C)C(55O)N(c2c1c(n(–n1cnnc1)c2)–c1ccccc1)C 322.12 1.19 �5.926 1

25 3240114 C15H13N3O5S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccc(OC)cc2)c(N)c1)55O 379.03 0.69 �6.160 1

26 3241895 C14H10FN3O4S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccc(F)cc2)c(N)c1)55O 367.01 0.44 �6.362 1

27 3243025 C11H8F3NO4 FC(F)(F)C1(Oc2c(NC155O)cccc2)OC(55O)C 275.04 0.85 �6.073 1

28 3243128 C14H11N3O4S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccccc2)c(N)c1)55O 349.02 0.26 �6.608 1

29 3243168 C16H12N2O6 o1cccc1C(55O)NCC(OCN1C(55O)c2c(cccc2)C155O)55O 328.07 8.56 �5.067 1

30 3250046 C22H19NO6 o1cccc1C(55O)NCC(OC(C(55O)c1ccc(OC)cc1)c1ccccc1)55O 393.12 18.35 �4.736 1

31 5293426 C19H14N4O3S S(CC(55O)Nc1ccccc1)c1nc(c(nn1)–c1occc1)–c1occc1 378.08 2.25 �5.648 1

32 11834381 C15H13N3O4S2 s1cc(cc1C(Oc1nn(S(55O)(55O)c2ccccc2)c(N)c1)55O)C 363.41 2.82 �5.550 1

33 11834392 C20H15N3O6S3 s1cccc1C(55O)Nc1n(S(55O)(55O)c2ccc(OC)cc2)nc(OC(55O)c2sccc2)c1 489.54 3.23 �5.490 1

34 3685806 C9H9N3O4S2 s1cccc1C(Oc1nn(S(55O)(55O)C)c(N)c1)55O 287.32 22.28 �4.652 1

35 11834389 C15H12N2O4S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccc(cc2)C)cc1)55O 348.40 33.10 �4.480 1

36 10145 C21H25NO4 CN1CCC255CC(55C(C355C2C1CC455CC(55C(C55C43)OC)OC)OC)OC 355.18 0

37 1205147 C23H26N6O4 CCOC155C(C55C(C55C1)CCNC(55O)CN2C355CC55CC55C3N55C2C455NON55C4N)OCC 450.20 0

38 1248970 C20H22N2O5S CC155C(C55C(C55C1)C(55O)NC255CC355C(C55C2)OCO3)S(55O)(55O)N4CCCCC4 402.12 0

39 1306035 C26H20N2O4 COC155CC55CC55C1OCC(55O)NC255C(C(55C(O2)C355CC55CC55C3)C455CC55CC55C4)C#N 424.14 0

40 1505224 C19H16N6O4 COC(55O)C155CC55CC55C1NC(55O)CN2C355CC55CC55C3N55C2C455NON55C4N 392.12 0

41 2612950 C10H6N4OS C155CSC(55C1C#N)NC(55O)C255NC55CN55C2 230.03 0

42 3236055 C21H21ClN2O3 CCN1C255CC55CC55C2C(55CC155O)OCC(55O)N(CC)C355CC(55CC55C3)Cl 384.12 0

43 3236935 C19H25N3O6S CC155C(C(55NO1)C)S(55O)(55O)N(CC(55O)NCC2CCCO2)C355CC55C(C55C3)OC 423.15 0

44 3238028 C21H27N3O6S2 CCOC(55O)C155C(N(C(55NC(55O)C255CC55C(C55C2)S(55O)(55O)N3CC(OC(C3)C)C)S1)C)C 481.13 0

45 3239534 C21H29N5O3S CC155C(C(55CC55C1)N2CCN(CC2)C(55O)C3CCN(CC3)S(55O)(55O)C455CN55CN4)C 431.20 0

46 3239997 C20H19ClN2O3 CCN(C155CC(55CC55C1)Cl)C(55O)COC255CC(55O)N(C355CC55CC55C32)C 370.11 0

47 3240677 C15H12FNO3 C155CC55C(C(55C1)C(55O)NCC255CC55C(C55C2)F)C(55O)O 273.08 0

48 3240711 C22H26N4O4S CC155C(C(55CC55C1)NC(55O)CN(C255CC55C(C55C2)OC)S(55O)(55O)C355C(NN55C3C)C)C 442.17 0

49 3241211 C20H18N6O4 CCOC(55O)C155CC55CC55C1NC(55O)CN2C355CC55CC55C3N55C2C455NON55C4N 406.14 0

50 3244032 C14H12N2S2 CSC155C(C(55CC(55N1)C2CC2)C355CC55CS3)C#N 272.04 0

51 3333 C18H19Cl2NO4 CCOC(55O)C155C(NC(55C(C1C255C(C(55CC55C2)Cl)Cl)C(55O)OC)C)C 383.07 0

52 3422818 C20H21FN2O2 C1CC(55O)N(C1C(55O)NCC255CC55C(C55C2)F)CCC355CC55CC55C3 340.16 0

53 380199 C11H13N3OS CN(C)C55NC155NC255C(S1)C55C(C55C2)OC 235.08 0

54 4226014 C21H27N3O2 CC155C(C55C(C55C1)NC(55O)NCC2CCN(C2)C355CC55C(C55C3)OC)C 353.21 0

55 5308432 C15H17N7 CC155NN55C2N1N55C(C55C2)N3CCN(CC3)C455CC55CC55N4 295.15 0

56 5308489 C18H21BrN6O2 C1CN(CCN1C255NN55C(C55C2)N3CCOCC3)C(55O)C455CC(55CN55C4)Br 432.09 0

57 571349 C17H15N5O CC155CC55C(C55C1)CN2C355CC55CC55C3N55C2C455NON55C4N 305.13 0

58 599637 C8H4BrN5O3 C155C(OC(55C1)Br)C255NC(55NO2)C355NON55C3N 296.95 0

59 6023689 C8H9ClN2O2S C/C(55N\S(55O)(55O)C155CC55C(C55C1)Cl)/N 232.01 0

60 651703 C9H12N4O5 C1COCCN1C(55O)COC(55O)C255NON55C2N 256.08 0

61 655872 C25H26N6O4 COCCNC(55O)C(C155CC(55CC55C1)OC)N(C255CN55CC55C2)C(55O)CN3C455CC55CC55C4N55N3 474.20 0

62 658581 C9H12N6O2 C1CCN(CC1)C255NC(55NO2)C355NON55C3N 236.10 0

63 6603449 C19H21ClFN5O3 C155CC55C(C(55C1)CNCCNC(55O)C255NON55C2N)OCC355CC55CC55C3FCl 421.13 0

64 660518 C19H19N3O5S CCOC(55O)CNS(55O)(55O)C155C(C55CC(55C1)C255NNC(55O)C355CC55CC55C32)C 401.10 0

65 664136 C20H21N5O2 CCCCC155C2C(55NN1)OC(55C(C23C455CC55CC55C4N(C355O)CC)C#N)N 363.17 0

66 664291 C21H19N3O2 C1CN(CC255CC55CC55C21)C355NC55C4C(55N3)CC(CC455O)C555CC55CO5 345.15 0

67 665203 C15H18N2O4 CC(C)(CC155C[N+](55C2C55C(C55CC255N1)OC)[O–])CC(55O)O 290.13 0

68 693069 C11H13NO4 COC155CC55CC55C1NC(55O)CCC(55O)O 223.08 0

69 715594 C15H17N5O3 CC155CC(55C(C55C1)C(C)C)OCC255NC(55NO2)C355NON55C3N 315.13 0

70 730135 C16H16N2O C1CC1C(55O)NC255CC55C(C55C2)NC355CC55CC55C3 252.13 0

71 1093235 C11H13N3O3S S(55O)(55O)(n1nc(OC)cc1N)c1ccc(cc1)C 267.30 0

72 11834379 C10H11N3O3S S(55O)(55O)(N1NC(55O)C55C1N)c1ccc(cc1)C 253.28 0

73 11834380 C16H14N4O4S s1cccc1C(Oc1nn(C(55O)Nc2ccc(OC)cc2)c(N)c1)55O 358.37 0

74 11834382 C18H13N3O4S2 s1c2c(cc1C(Oc1nn(S(55O)(55O)c3ccccc3)c(N)c1)55O)cccc2 399.44 0

75 11834384 C16H17N3O7S S(55O)(55O)(n1nc(OC(55O)C)cc1N(C(55O)C)C(55O)C)c1ccc(OC)cc1 395.39 0
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Table 1 (Continued )

Compd CIDb Mol. formula SMILES MW IC50

(mM)

log IC50 Active

76 11834385 C21H17N3O5S2 s1cccc1C(Oc1nn(S(55O)(55O)c2ccc(cc2)–c2ccc(OC)cc2)c(N)c1)55O 455.51 0

77 11834386 C16H14N4O5S S(55O)(55O)(n1nc(OC(55O)c2ccncc2)cc1N)c1ccc(OC)cc1 374.37 0

78 11834387 C15H15N3O4S2 s1cccc1COc1nn(S(55O)(55O)c2ccc(OC)cc2)c(N)c1 365.43 0

79 11834388 C10H10N2O3S S(55O)(55O)(N1NC(55O)C55C1)c1ccc(cc1)C 238.26 0

80 11834390 C15H14N4O5S2 s1cccc1NC(55O)NC551N(S(55O)(55O)c2ccc(OC)cc2)NC(55O)C551 394.43 0

81 11834391 C15H13N3O4S2 s1cccc1C(55O)NC551N(S(55O)(55O)c2ccc(cc2)C)NC(55O)C551 363.41 0

82 11834393 C14H13N3O6S3 s1cccc1S(Oc1nn(S(55O)(55O)c2ccc(OC)cc2)c(N)c1)(55O)55O 415.47 0

83 11834394 C11H10F3N3O6S2 S(55O)(55O)(n1nc(OS(55O)(55O)C(F)(F)F)cc1N)c1ccc(OC)cc1 401.34 0

84 11834395 C9H12O3S3 s1cccc1C(SCC(O)C(O)CS)55O 264.38 0

85 5035758 C10H11N3O3S S(55O)(55O)(NNC(55O)CC#N)c1ccc(cc1)C 253.28 0

86 573755 C11H8O2S s1cccc1C(Oc1ccccc1)55O 204.25 0

a The information was obtained from PubChem database (BioAssay #: 820 and 523).
b CID: Pubchem compound accession. Mol. formula: molecular formula, MW: molecular weight.
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inhibition mechanism of these inhibitors [24–26]. These compu-
tational approaches have proved efficient and essential for
optimizing and designing chemical agents with improved biologi-
cal activities [27–29].

In an effort to identify chemical probes through high
throughput screening (HTS) technology, a number of chemicals
have been found to be active against cathepsin B in the screening
campaign for inhibitor identification, with the NIH Molecular
Libraries Program (MLP). The screening results were deposited into
the PubChem (http://pubchem.ncbi.nlm.nih.gov), a database for
molecular structures and associated biological activities which is
available to general public. The database contains the 2D
structures and the biological activity (IC50) derived from dose–
response HTS experiments for the active compounds tested.

In a previous study [30,31], docking simulation was used to
model the binding structures of the active compounds identified
by the high throughput screening (HTS) tests to the binding site of
the protein. A relative binding affinity was calculated for each
compound studied based on the respective modeled bound
structure using the linear response molecular mechanics Poisson
Boltzmann-surface area method (LR-MM-PBSA). Strong correla-
tions between the calculated binding affinities and experimental
biological activities were obtained [30,31]. Three-dimensional
(3D) Comparative Molecular Field Analysis (CoMFA) quantitative
structure–activity relationships (QSAR) models were also estab-
lished based on the multi-conformation method with high
correlation coefficients for these active compounds (to be
published). Given the importance of the enzyme in disease
treatment and the broad research interest to screen and identify
potent inhibitors, efforts have been taken further to build the QSAR
models to correlate the molecular and physicochemical properties
Fig. 1. The active site located in the dimer interface of cathepsin protein complexed with

proteins are shown with surface mode with the primary protein in red and the second p

helixes, green for loops, and yellow for b-sheets) to show the binding location and co
with the biological activities of the compounds tested in the
Cathepsin B inhibition screening experiments. Efforts were also
undertaken to build statistical models to classify inhibition
activities against Cathepsin B for specific compounds. This work
reports the results of the continuous (continuous in bioactivity
space) and binary (two discrete bioactivity status, e.g. ‘active’ vs.
‘inactive’) QSAR models in order to obtain insight into the
relationship of chemical structure and physicochemical proper-
ties/biological activity. Additionally, the results of this work may
provide means to pre-screen compounds to facilitate in silico

design of de novo cathepsin B inhibitors and the development of
drugs for the treatment of various human diseases using some
other molecular targets.

2. Materials and methods

2.1. Data set and molecule preparation

The 3D chemical structures of all small molecule compounds
were first converted from the 2D molecular structures obtained
from the PubChem database (PubChem bioAssay accession: 820
and 523) [32], which were subsequently subjected to energy
minimization calculation until the root mean square deviation
(RMSD) of potential energy was smaller than 0.001, using the
Optimized Potentials for Liquid Simulations (OPLS) force field [33–
36] by the Molecular Operating Environment (MOE) program
(Version 2007.09, developed by Chemical Computing Group,
Montreal, Canada). In Bioassay AID (Pubchem bioassay accession)
820, 75 compounds were tested by a dose–response confirmatory
screening experiment, whereas 37 compounds were confirmed to
have inhibitory activity, 35 compounds were confirmed to have no
ligand DNP (stick-ball mode) in crystal complex (PDB code: 1GMY). (A) The dimer

rotein in green. (B) The primary protein is depicted with a ribbon diagram (red for

nformation of the ligand DNP (stick-ball mode in grey).

http://pubchem.ncbi.nlm.nih.gov/


Table 2
The calculated molecular and physicochemical properties (descriptors) of 86 compounds used to build QSAR models.

Compd. Esol Apol MR Dipole SApol SA Vol log P(o/w) Nacc Ndon Nacc+don

1 �2.42 48.03 9.25 1.39 43.03 355.29 316.25 2.51 5 0 5

2 �2.60 43.02 8.38 0.91 45.20 302.53 277.88 3.52 3 1 4

3 �2.73 47.38 9.28 1.69 72.75 351.85 309.00 2.69 4 1 5

4 �3.26 53.23 10.09 1.98 75.25 380.19 337.88 3.12 5 1 6

5 �6.53 42.07 8.33 1.12 72.75 316.24 281.63 1.73 4 1 5

6 4.86 49.66 9.86 0.38 38.50 364.58 320.75 2.46 3 1 4

7 �7.46 45.28 8.73 1.71 72.75 334.83 295.00 1.88 4 1 5

8 �1.70 48.37 8.82 0.28 58.76 333.24 301.25 1.88 4 1 5

9 �8.40 46.08 8.91 1.37 75.25 348.53 301.63 1.54 5 1 6

10 �0.10 26.09 5.23 0.70 52.07 228.61 186.25 0.76 3 2 5

11 �6.83 50.13 9.64 1.73 75.25 369.86 325.25 2.82 5 1 6

12 1.95 53.33 9.56 0.75 42.00 366.33 334.88 2.34 5 0 5

13 4.09 50.68 9.36 0.45 61.92 388.44 335.00 0.03 6 0 6

14 2.25 49.52 9.46 0.86 27.44 357.59 316.88 3.39 4 0 4

15 1.63 52.61 9.94 0.80 27.44 381.60 338.00 3.86 4 0 4

16 �0.35 47.65 9.44 1.53 24.93 352.29 316.25 2.53 3 0 3

17 �24.17 64.75 11.27 2.46 70.11 417.28 394.63 4.32 5 1 6

18 �2.42 38.67 7.00 0.82 66.10 295.12 252.38 �1.65 5 1 6

19 �18.91 41.94 7.89 2.23 48.02 301.79 265.00 0.72 3 0 3

20 �3.85 50.12 9.44 1.11 47.70 334.35 312.63 3.65 4 1 5

21 �2.94 47.03 8.98 0.86 47.70 330.19 299.88 3.36 4 1 5

22 0.68 42.07 8.21 1.23 36.15 282.17 263.75 3.92 3 0 3

23 �20.71 52.94 10.09 2.47 74.50 371.50 332.00 2.03 2 0 2

24 �0.23 45.70 8.66 0.22 45.98 345.12 310.75 0.93 4 0 4

25 �2.98 48.18 9.46 1.65 75.25 360.35 313.88 2.35 5 1 6

26 �0.96 44.17 8.88 0.92 72.75 322.59 287.13 2.55 4 1 5

27 7.73 30.67 5.77 0.87 35.32 237.88 209.25 2.13 3 1 4

28 �6.75 44.28 8.82 2.56 72.75 322.89 288.50 2.40 4 1 5

29 �3.59 43.17 8.28 1.22 59.95 326.87 286.25 0.58 4 1 5

30 3.06 57.30 10.79 0.79 48.89 323.03 337.13 2.90 4 1 5

31 0.31 52.48 10.44 0.98 43.77 373.78 339.00 2.97 4 1 5

32 �4.71 47.38 9.28 1.81 72.75 347.05 304.50 2.73 4 1 5

33 �25.98 62.01 12.39 4.04 76.76 442.14 398.63 3.51 6 1 7

34 �7.17 34.15 6.71 1.17 72.75 256.56 221.38 0.74 4 1 5

35 0.45 45.61 9.01 1.48 55.00 336.87 293.50 2.92 4 0 4

36 3.02 98.35 17.60 0.86 57.94 410.70 404.25 5.31 10 0 10

37 �11.90 108.04 19.91 1.78 117.37 441.79 460.75 4.99 11 2 13

38 �38.13 99.39 18.17 1.01 104.19 462.33 426.75 4.64 10 1 11

39 0.75 104.92 19.89 1.11 89.92 465.95 474.50 6.88 9 1 10

40 7.49 94.33 17.92 0.62 125.93 416.34 421.00 4.32 10 2 12

41 �2.68 70.12 13.76 1.25 96.28 306.93 294.13 2.10 9 1 10

42 5.75 98.16 18.26 0.76 77.56 433.12 432.75 6.08 8 0 8

43 5.63 101.53 18.44 0.64 115.08 423.36 430.75 2.75 11 1 12

44 �2.94 109.29 19.92 1.24 115.26 510.59 485.88 5.18 11 0 11

45 1.91 107.52 19.22 0.86 104.87 478.28 481.75 2.39 10 2 12

46 4.65 95.07 17.78 0.74 77.56 411.88 411.00 5.74 8 0 8

47 6.67 78.88 14.95 0.99 94.30 332.24 324.13 4.85 8 3 11

48 �2.90 106.98 19.66 1.72 120.53 480.71 471.75 4.77 11 3 14

49 6.87 97.42 18.39 0.53 125.93 398.43 414.13 4.67 10 2 12

50 7.26 81.05 15.46 0.53 71.35 355.71 350.75 5.49 7 0 7

51 7.87 93.43 17.46 0.08 80.74 483.06 457.13 6.19 7 1 8

52 2.64 93.98 17.25 0.72 80.74 371.23 379.75 4.88 7 1 8

53 0.40 75.44 14.21 0.25 61.79 334.58 312.00 4.47 8 0 8

54 �0.71 100.28 17.96 0.80 75.36 446.78 459.25 5.36 7 2 9

55 2.35 85.85 15.75 0.56 81.87 345.63 349.25 3.01 9 0 9

56 3.24 97.35 18.02 0.77 88.52 431.17 427.75 3.51 10 0 10

57 �6.95 86.64 16.30 0.84 93.12 371.62 355.50 5.69 8 1 9

58 �16.67 68.12 13.47 0.71 104.00 315.16 295.50 2.93 9 1 10

59 �5.24 69.38 13.24 2.33 105.75 319.01 296.00 3.93 8 1 9

60 1.82 72.66 13.42 0.74 117.07 325.83 312.75 0.28 10 1 11

61 3.20 111.56 20.76 1.79 114.01 480.30 484.63 3.59 12 1 13

62 �0.34 72.46 13.37 1.10 104.00 319.83 304.13 2.47 9 1 10

63 3.43 95.65 17.86 0.52 114.87 377.95 388.38 4.04 10 3 13

64 �4.71 96.73 18.06 1.40 133.99 393.38 397.25 4.88 10 2 12

65 �1.42 96.72 17.66 0.93 115.81 494.46 475.63 5.22 9 3 12

66 1.76 94.95 17.51 0.76 72.85 414.17 398.75 3.66 8 0 8

67 �3.81 84.22 15.38 0.47 100.21 370.84 365.25 4.53 10 2 12

68 �1.49 72.75 13.47 1.35 96.81 324.38 301.00 2.73 9 3 12

69 �10.12 86.05 15.95 0.58 106.50 389.15 371.13 4.47 10 1 11

70 1.44 82.24 15.16 0.37 72.85 344.02 331.75 4.96 6 2 8

71 �11.49 36.63 6.85 2.49 59.18 273.47 232.63 1.52 3 1 4

72 �13.03 33.54 6.27 2.48 72.75 246.89 214.50 0.37 3 2 5

73 4.03 48.00 9.39 0.19 62.48 351.27 314.13 2.72 4 2 6

74 �27.88 52.66 10.45 1.55 72.75 362.57 330.50 3.87 4 1 5

75 �31.16 51.31 9.63 3.59 84.64 382.88 334.25 1.30 7 0 7

76 �3.82 61.41 11.98 2.26 75.25 433.90 390.13 4.31 5 1 6
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Table 2 (Continued )

Compd. Esol Apol MR Dipole SApol SA Vol log P(o/w) Nacc Ndon Nacc+don

77 �7.18 48.81 9.46 2.16 80.93 355.59 315.75 1.59 6 1 7

78 �0.04 48.71 9.40 1.46 61.68 346.64 309.63 2.50 4 1 5

79 �3.28 31.77 6.01 1.44 55.00 234.94 202.25 0.35 3 1 4

80 �51.53 49.95 9.69 5.22 82.44 363.13 320.13 1.16 5 3 8

81 �32.63 47.38 9.21 4.50 74.25 335.87 301.75 1.53 4 2 6

82 �27.45 50.12 9.81 3.67 93.70 367.80 322.75 2.08 6 1 7

83 �28.50 41.61 8.03 2.54 93.70 327.67 278.00 2.01 6 1 7

84 1.48 34.95 6.71 1.04 40.70 256.19 222.13 1.32 3 2 5

85 �6.64 33.54 6.42 1.54 84.56 262.41 219.25 0.40 4 2 6

86 �8.75 29.20 5.84 1.13 13.57 217.66 189.63 3.03 1 0 1

Apol: sum of atomic polarizabilities. MR: molar refractivity. Dipole: the dipole moment. SApol: hydrophilic surface area. SA: solvent accessible surface area. Vol: molecular

volume. Nacc: the number of hydrogen bond acceptors. Ndon: the number of hydrogen bond donors. Nacc+don: the summary of the number of hydrogen bond acceptors and

doners. log P(o/w): log octanol/water partition coefficient.
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inhibitory activity, and the bioactivity outcome for the remaining 3
compounds were reported as ‘‘inconclusive’’. By further examining
these active compounds using different experimental protocol,
assay depositors suggested that some of them were likely artifacts.
Further investigation using several independent bioassay tests
(different biological experiments), which may be affected by similar
causes of artifact, suggested that five compounds bear greater
chance as being false positives, and they were removed from the
current analysis. So, 32 active (37 � 5) and 35 inactive compounds
from bioassay 820 were included in the work. Bioassay 523
employed a similar experimental protocol to the Bioassay 820,
where 27 compounds were tested, 10 compounds were confirmed
having inhibitory activity, 16 compounds were confirmed having no
inhibitory activity, and one compound was reported as ‘‘inconclu-
sive’’. Four out of the 10 active compounds are unique structures and
were added to the active compound list. Total 36 active compounds
(32 from bioassay 820 and 4 from bioassay 523) and 51 inactive
compounds (35 from bioassay 820 and 16 from bioassay 523) were
used in the modeling. The average IC50 reported in the bioassay
depositions was used for the bioactivity of the active compounds.
The PubChem compound accession (CID), molecular formula, and
biological activity (IC50) for the 86 compounds are listed in Table 1
(one active compound was not included in QSAR modeling as no
3D conformer was obtained in docking simulation). Molecular
structure and other information can be obtained from PubChem
website based on CIDs (http://pubchem.ncbi.nlm.nih.gov) and
the bioassay protocol information can be obtained from PubChem
website by BioAssay ID (AID) 820 and 523 (http://pubchem.nc-
bi.nlm.nih.gov/assay/assay.cgi?aid=820 and http://pubchem.nc-
bi.nlm.nih.gov/assay/assay.cgi?aid=523) [32]. The compounds
tested in the confirmatory assays were cherry picked based on
the screening results for over 60,000 compounds in a single dose HTS
assay for potential cathepsin B inhibition activity (PubChem AID:
453) by measuring the release of the fluorophore aminomethyl
coumarin (AMC) from the hydrolysis of an AMC-labeled dipeptide.
The large number of inactive compounds from the primary HTS
assay was not included in the model since the statistical methods
typically do not perform well on unbalanced data sets. Therefore
claiming all compounds as inactive will yield an accuracy of 99.94%
as pointed out by Weis et al. [37].

The three-dimensional structure coordinate of cathepsin
protein bound with dipeptidyl nitrile (DPN) was obtained from
Protein Databank (PDB code: 1GMY [21]). The PDB file for the
crystallographic structure complex of cathepsin B contains three
chains A, B and C. The first two chains form a dimer and were used
in docking simulation (Fig. 1). Hydrogen atoms and partial charges
were added to the protein and then short steps of minimization
were performed to relax the newly added hydrogen atoms and the
potential steric contacts in the original PDB coordinates. The
minimizations were performed using an OPLS force field following
the standard protocol of the Glide program (version 8 in
FirstDiscovery suite) [38,39]. The minimized protein structure
was then used to generate a docking grid which was used to docked
all active compounds into the DPN binding site. A docking box
(exterior box) of 16 � 18 � 22 Å for the placement of all ligand
atoms and a restraining box (interior box) of 8 � 10 � 14 Å for the
placement of ligand geometric center were used to generate the
docking grid. The boxes were centered at the geometric center of
DPN ligand. Default values were used for all other settings within
Glide (version 8).

2.2. Conformation determination and molecule alignment

All active compounds were flexibly docked into the active site of
the cathepsin protein based on the generated docking grid. All
docking simulations were carried out using Glide program. Details
of the docking simulation can be obtained from previously
reported work [30,31,40]. Docking simulation was used to
determine the ‘‘active’’ conformation of each compound according
to the structural and physicochemical properties of the binding
site. The 3D conformation for each inactive compound was
modeled by flexibly aligning it to the 3D conformer of DPN, the
ligand in the crystal complex. The alignment was carried out based
on molecular shape (volume) and pharmacophore elements using
the flexible alignment module implemented in MOE, default
parameters were used for the flexible alignment. The conformation
for each active compound was also obtained using the same
alignment for the comparison with the conformation obtained
from docking simulations in QSAR modeling.

2.3. Statistical analysis

Partial least-squares (PLS) analysis method was used to conduct
statistical analysis and to derive a continuous QSAR model based
on the descriptors calculated for each inhibitor. The PLS method
has been proved to be a priority method for such statistical analysis
especially in the case where the number of descriptors is large. All
PLS calculations were carried out with the module implemented in
MOE. The log10 IC50 value was used as a dependent variable and the
calculated molecular and physicochemical properties were used as
independent variables for the analysis. Over 50 descriptors were
calculated and preliminary factor analysis was conducted to obtain
the optimum correlation between each individual descriptor and
the biological activity (log IC50). The nine descriptors listed in
Table 2 were selected and used to build QSAR models. An optimal
number of components (9 components for continuous models and
8 for binary models) were used to build final models.

Model validation was carried out by the Leave-one-out (LOO)
cross-validation procedure and training-test set approach in which
the compounds were split into training sets for model building and
test sets for which activities were predicted by the built model.
Both continuous and binary models were validated by LOO and

http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=820
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=820
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=523
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=523


Table 3
Continuous all model: the predicted activities and errors (difference between

predicted and observed activity (log IC50)) of 42 compounds predicted by two

statistic methods based on the QSAR model.

Compnd # log IC50 Non-validated Cross-validated

Predicted Error Predicted Error

1 �4.94 �5.13 0.19 �5.15 0.20

2 �4.47 �5.16 0.69 �5.26 0.79

3 �5.70 �5.57 �0.13 �5.55 �0.15

4 �4.91 �5.49 0.57 �5.62 0.70

5 �5.90 �5.60 �0.30 �5.54 �0.35

6 �5.20 �4.77 �0.43 �4.68 �0.52

7 �5.76 �5.55 �0.21 �5.53 �0.22

8 �4.35 �4.90 0.55 �5.00 0.65

9 �6.04 �5.45 �0.59 �5.38 �0.66

10 �5.67 �5.53 �0.15 �5.48 �0.20

11 �5.02 �5.50 0.48 �5.55 0.53

12 �5.17 �4.76 �0.41 �4.67 �0.51

13 �4.71 �5.06 0.35 �5.19 0.49

14 �5.05 �4.68 �0.37 �4.62 �0.43

15 �4.40 �4.61 0.21 �4.65 0.25

16 �4.42 �4.97 0.56 �5.16 0.74

17 �5.68 �5.03 �0.65 �4.03 �1.65

18 �4.85 �5.31 0.46 �5.50 0.65

19 �5.38 �5.10 �0.28 �4.95 �0.43

20 �4.43 �5.02 0.59 �5.10 0.67
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three training-test experiments in which nine compounds were
randomly selected as test compounds and all other compounds
were used as training set for QSAR model building. The LOO
technique provides a good way to quantitatively evaluate the
predictive ability and robustness of a model by predicting each
compound’s activity using a QSAR model built based on informa-
tion of the remaining compounds, which avoids the effect of a
compound on its own activity prediction. This approach tries to
eliminate the over-fitting problem normally existing in conven-
tional regression method which includes all compounds in model
construction. A cross-validated correlation coefficient (q2) was
used to measure the predictability of a model and the conventional
correlation coefficient (r2) was used to measure the quality of a
model.

3. Results and discussion

3.1. Conformation determination and alignment construction

In order to calculate the physicochemical and molecular
property-based descriptors to build QSAR models, 3D confirmation
for each studied compound was needed. The 3D structures of these
compounds were first converted from their 2D structures. As
stated in Section 2, totally 36 active compounds and 51 inactive
compounds with unique structures were obtained from two
confirmatory bioassay data entries (PubChem AID 820 and 523).
Docking simulations and molecular alignment methods were
applied to obtain active 3D confirmers for the 36 active
compounds. In the docking simulations, the active compounds
were docked into the active site of cathepsin B using the same
methodology and confirmation determination procedure as
described previously [30]. Reliable docked poses were obtained
for all but one compound. Detail results and discussion on
conformer selection and comparison for most compounds can be
found in previous report [30]. As a result, the 35 compounds with
docking results were included in the QSAR modeling. The docked
cluster of the active compounds is depicted in Fig. 2. It is seen that
all these compounds were docked in the binding site with
comparable binding conformers and roughly the similar locations.

In the molecular alignment, all 86 (active and inactive)
compounds were superposed onto DPN using flexible molecular
alignment method. The best fitted conformation of each compound
was selected. The fitting was scored based on molecular shape
(occupied volume) and pharmacophore matching which includes
hydrogen donor, hydrogen acceptor, hydrophobic atoms, polar
hydrogen atoms, and aromaticity of the two molecules. The 3D
conformation for each compound was selected based on the best fit
Fig. 2. The cluster of docked poses of the active compounds in the protein binding site.
from MOE. Two separate sets of molecular structures were
prepared, one based on docked structures for active compounds
and molecular alignment for inactive compounds and the other
based on the molecular alignment for all compounds. The two sets
of 3D structures were used to build QSAR models for comparison
and they yielded the very similar results. The information,
including PubChem compound accession, e.g. CID, molecular
formula, SMILES (Simplified Molecular Input Line Entry Specifica-
tion) string, molecular weight (MW), and the activity (IC50), as
obtained from PubChem BioAssay database (AID: 820 and 523) of
all 86 compounds used in the work are listed in Table 1. To build a
binary QSAR model, the activities of the active and the inactive
compounds were assigned as 1 and 0, respectively.

3.2. Descriptor calculation

Over 250 descriptors are available with MOE QSAR module.
Initial selection for the descriptors was attempted empirically
based on the nature of the descriptors, the features of the studied
molecular set, and the problem studied. Those which are not
relevant to the modeling, such as the total energy, heat of
formation, the numbers of bromine, boron, fluorine, or phosphorus
atoms, were eliminated from further consideration in the work.
21 �4.34 �5.03 0.70 �5.12 0.78

22 �5.15 �5.11 �0.04 �5.10 �0.05

23 �5.03 �5.28 0.26 �5.61 0.58

24 �5.93 �5.04 �0.88 �4.80 �1.12

25 �6.16 �5.56 �0.60 �5.49 �0.67

26 �6.36 �5.51 �0.85 �5.33 �1.03

27 �6.07 �5.37 �0.70 �5.03 �1.04

28 �6.61 �5.85 �0.75 �5.65 �0.95

29 �5.07 �5.35 0.28 �5.38 0.31

30 �4.74 �4.97 0.23 �5.23 0.50

31 �5.65 �5.00 �0.65 �4.88 �0.77

32 �5.55 �5.52 �0.03 �5.52 �0.03

33 �5.49 �5.72 0.23 �5.99 0.50

34 �4.65 �5.59 0.94 �5.80 1.15

35 �4.48 �5.27 0.79 �5.36 0.88

37 �3.00 �3.06 0.06 �3.10 0.10

39 �3.00 �3.02 0.02 �3.03 0.03

43 �3.00 �3.03 0.03 �3.04 0.04

50 �3.00 �3.22 0.22 �3.28 0.28

51 �3.00 �3.20 0.20 �3.33 0.33

52 �3.00 �2.59 �0.41 �2.41 �0.59

53 �3.00 �2.83 �0.17 �2.68 �0.32
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Over 50 descriptors of physicochemical molecular properties were
selected and calculated for all studied compounds based on the
constructed 3D conformations using the methods implemented in
MOE (version 2007.09). Factor analyses were performed to
examine the correlation between each individual descriptor and
the biological activity (log IC50) of these compounds. The nine
descriptors that demonstrated an apparent correlation with the
observed biological activity were chosen to build QSAR models,
which are listed in Table 2. Among these descriptors, Nacc+don is the
sum of the counts of hydrogen acceptor and donor. Apol, MR, and
Dipole are the sum of atomic polarizabilities [41], molar
refractivity, and the dipole moment of a molecule calculated from
the partial charges of the molecule, respectively. SA and SApol are
the water accessible surface areas (WASA) of whole molecule and
the hydrophilic part of WASA calculated using a radius of 1.4 Å for
the probe, respectively. Vol, Esol, and log P(o/w) are the molecular
volume, the empirical solvation energy calculated based on OPLS
force field, and the log value of octanol/water partition coefficient
of a compound, respectively. Most of these descriptors are related
to the molecular solvation properties to some degree. Calculation
of molecular solvation or partition of a compound between
hydrophobic and hydrophilic compartments still remains chal-
lenging. Combination of various computational methods would be
a better choice to estimate the chemical’s partition property which
is well regarded to have direct and large effect on its biological
activities.

3.3. Continuous QSAR models

Conventional QSAR models were constructed for the 35 active
compounds based on the measured biological activities (log IC50)
using the PLS regression method. A model for the entire compound
Fig. 3. The plots of the predicted vs. observed bioactivity (log IC50) for the continuous mod

model 2. (D) The training-test model 3. For (B–D): the predicted activity for the 6 compo

training set (green squares). The lines are unit slops for perfect predictions (predicted
set was first built to examine model coherence of all compounds
and to identify the potential outliers. The model was then validated
using the LOO method and three training-test sets to examine the
predictability and robustness of the QSAR models. To extend the
prediction spectrum to include inactive compounds, seven inactive
compounds were randomly chosen and included in the models.
The inhibitory activity (reading) of these compounds at the max
tested concentration (50 mM) was close to the reading of the
control experiments. It was assumed that their IC50 (if exists) was
much higher than 50 mM. To enable the numerical analysis, a value
of �3.00 was assigned as the IC50 of these five inactive compounds
in the QSAR analysis.

The predicted results and prediction errors for the model based
on all 42 compounds (all model) are listed in Table 3. Two
thresholds, one and half units, respectively were used to validate
the calculated results. The former corresponds to a �10-fold
variation ranges or with a range of a single order of magnitude on each
direction from the experimental value of IC50 and the latter
corresponds to �3.33-fold variation ranges or within a window of
a single order of magnitude on IC50. The non-validated model based
on 9 descriptors (properties) showed strong ability to predict the
biological activities with errors (difference between the predicted
value and experimental value) of smaller than one unit for all 42
compounds. Twenty-six compounds (62%) have predicted errors
smaller than or equal to 0.5 unit by the model. Model evaluation using
the LOO validation method generated satisfactory results. The
observed activities vs. the predicted activities by the non-validated
fitting model and cross-validated model are plotted in Fig. 3A. By
further checking the predicted results of the cross-validation model, it
was noted that the three compounds (compounds 24, 26 and 34) had
predicted errors close to one unit. When these three compounds were
treated as outliers and excluded from the model construction, the
els. (A) The continuous all model. (B) The training-test model 1. (C) The training-test

unds in test set (red triangles) based on the model built on the 36 compounds in the

= observed).



Table 4
3 Outlier model: the predicted activities and residues of 37 compounds predicted by

two statistic methods based on the QSAR model excluding three outliers

(compounds 24, 26, and 34) from the all model.

Compd. # log IC50 Non-validated Cross-validated

Predicted Error Predicted Error

1 �4.94 �5.11 0.17 �5.13 0.18

2 �4.47 �5.10 0.63 �5.21 0.73

3 �5.70 �5.56 �0.14 �5.54 �0.16

4 �4.91 �5.55 0.64 �5.70 0.79

5 �5.90 �5.47 �0.43 �5.35 �0.55

6 �5.20 �4.55 �0.65 �4.39 �0.81

7 �5.76 �5.55 �0.21 �5.53 �0.23

8 �4.35 �4.77 0.41 �4.86 0.51

9 �6.04 �5.40 �0.63 �5.30 �0.73

10 �5.67 �5.63 �0.04 �5.61 �0.06

11 �5.02 �5.50 0.48 �5.56 0.54

12 �5.17 �4.72 �0.45 �4.60 �0.57

13 �4.71 �4.90 0.20 �4.99 0.28

14 �5.05 �4.64 �0.41 �4.57 �0.48

15 �4.40 �4.54 0.14 �4.57 0.18

16 �4.42 �4.90 0.49 �5.08 0.67

17 �5.68 �5.10 �0.58 �4.17 �1.51

18 �4.85 �5.32 0.48 �5.54 0.69

19 �5.38 �5.19 �0.19 �5.08 �0.30

20 �4.43 �4.99 0.56 �5.06 0.63

21 �4.34 �4.98 0.64 �5.06 0.72

22 �5.15 �5.14 �0.01 �5.14 �0.01

23 �5.03 �5.19 0.16 �5.40 0.38

24 �5.93

25 �6.16 �5.55 �0.61 �5.47 �0.69

26 �6.36

27 �6.07 �5.55 �0.52 �5.28 �0.79

28 �6.61 �5.96 �0.64 �5.78 �0.82

29 �5.07 �5.30 0.23 �5.32 0.26

30 �4.74 �4.75 0.02 �4.77 0.04

31 �5.65 �4.82 �0.83 �4.64 �1.01

32 �5.55 �5.54 �0.01 �5.54 �0.01

33 �5.49 �5.80 0.31 �6.19 0.70

34 �4.65

35 �4.48 �5.28 0.80 �5.37 0.89

37 �3.00 �3.14 0.14 �3.24 0.24

39 �3.00 �2.91 �0.09 �2.88 �0.12

43 �3.00 �3.05 0.05 �3.08 0.08

50 �3.00 �3.24 0.24 �3.31 0.31

51 �3.00 �3.01 0.01 �3.01 0.01

52 �3.00 �2.69 �0.31 �2.54 �0.46

53 �3.00 �2.97 �0.03 �2.95 �0.05

Table 5
The training-test model 1: the predicted activities and residues of 36 compounds in

the training set and 6 compounds in the test set.

Compd. # log IC50 Non-validated Cross-validated

Predicted Error Predicted Error

Training set

1 �4.94 �5.13 0.19 �5.15 0.21

2 �4.47 �5.33 0.86 �5.48 1.01

4 �4.91 �5.35 0.44 �5.47 0.56

5 �5.90 �5.73 �0.16 �5.69 �0.21

6 �5.20 �4.78 �0.41 �4.69 �0.51

8 �4.35 �5.04 0.69 �5.18 0.83

9 �6.04 �5.52 �0.51 �5.44 �0.59

10 �5.67 �5.74 0.07 �5.77 0.09

11 �5.02 �5.48 0.46 �5.55 0.53

12 �5.17 �4.73 �0.44 �4.61 �0.56

13 �4.71 �4.96 0.25 �5.07 0.36

14 �5.05 �4.69 �0.36 �4.61 �0.44

16 �4.42 �4.90 0.49 �5.09 0.68

17 �5.68 �5.12 �0.57 �4.15 �1.53

18 �4.85 �5.36 0.51 �5.59 0.74

19 �5.38 �5.21 �0.17 �5.12 �0.26

20 �4.43 �5.14 0.71 �5.24 0.81

22 �5.15 �5.19 0.04 �5.20 0.05

23 �5.03 �5.26 0.23 �5.58 0.56

24 �5.93 �5.15 �0.78 �4.93 �1.00

26 �6.36 �5.59 �0.77 �5.37 �0.99

27 �6.07 �5.42 �0.65 �5.09 �0.99

28 �6.61 �5.75 �0.85 �5.46 �1.14

29 �5.07 �5.37 0.30 �5.40 0.33

30 �4.74 �5.04 0.30 �5.40 0.66

31 �5.65 �5.03 �0.62 �4.90 �0.75

32 �5.55 �5.47 �0.08 �5.46 �0.09

33 �5.49 �5.62 0.13 �5.79 0.30

35 �4.48 �5.20 0.72 �5.30 0.82

37 �3.00 �3.13 0.13 �3.23 0.23

39 �3.00 �2.98 �0.02 �2.97 �0.03

43 �3.00 �2.91 �0.09 �2.84 �0.16

50 �3.00 �3.23 0.23 �3.30 0.30

51 �3.00 �3.10 0.10 �3.18 0.18

52 �3.00 �2.59 �0.41 �2.40 �0.60

53 �3.00 �3.04 0.04 �3.07 0.07

Test set

3 �5.70 �5.49 �0.21

7 �5.76 �5.55 �0.21

15 �4.40 �4.60 0.20

21 �4.34 �5.18 0.84

25 �6.16 �5.50 �0.66

34 �4.65 �5.78 1.13
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new model (3 outlier model) consisting of the remaining 39
compounds demonstrated an improved quality. The predicted
activities for these 39 compounds are listed in Table 4. All compounds
have predicted errors smaller than one unit in the non-validated
model and 37 compounds have predicted errors smaller than on unit
in the cross-validated model. Twenty-seven and more than half
compounds have predicted errors smaller than half unit according to
the non-validated and cross-validated results, respectively. These
cross-validation results demonstrated the strong predictability of the
constructed models for the application of cathepsin B inhibition
activity prediction.

To further evaluate the model’s predictability and robustness,
three additional models were built using the training-test-set
method, in which the compounds were randomly split into a
training set and test set. In this work, six compounds were
randomly selected for the test set and this process was repeated
three times. The predicted results for the three models are listed in
Tables 5–7. The plots of the observed activities vs. the predicted
activities for the training compounds and testing compounds are
shown in Figs. 3B–3D. It is seen that the predicted results for the
testing compounds are close to their experimental activities with
reasonable deviations. All three models based on the training set of
compounds demonstrated similar predictability results.
As a summary, the non-validated regression coefficient, cross-
validated coefficient, and root mean square error (RMSE) for the all
model are 0.771, 0.608, and 0.483, respectively (Table 8). The non-
validated, cross-validated coefficients, and RMSE for the 3 outlier
model are 0.821, 0.683, and 0.424, respectively (Table 8). The
statistics results for the three training-test models are also listed in
Table 8. All three models based on the training set of compounds
have similar statistical properties as the all model described above,
with non-validated correlation coefficients of 0.804–0.807 and
cross-validated coefficients of 0.637–0.675. The predicted errors
for all test compounds but one (compound 34) in the three training
sets are smaller than one unit. The Models 1 and 3 (Tables 5 and 7)
have two test compounds predicted with errors larger than half
unit and the Model 2 has the most compounds predicted with
errors larger than half unit. These results show that the
predictability of these models is acceptable. Considering the fact
that the compound structures and bioactivities studied are
reasonably diverse, it is reasonable to conclude that the models
demonstrated relatively strong prediction power for estimating
the activity of the ‘‘unknown’’ compounds based on the ‘known’
compounds.



Table 6
The training-test model 2: the predicted activities and residues of 36 compounds in

the training set and 6 compounds in the test set.

Compd. # log IC50 Non-validated Cross-validated

Predicted Error Predicted Error

Training set

1 �4.94 �4.99 0.05 �5.00 0.06

2 �4.47 �5.21 0.74 �5.34 0.87

3 �5.70 �5.49 �0.21 �5.46 �0.24

4 �4.91 �5.35 0.44 �5.48 0.57

5 �5.90 �5.75 �0.15 �5.72 �0.18

7 �5.76 �5.57 �0.19 �5.55 �0.21

8 �4.35 �5.03 0.68 �5.17 0.82

9 �6.04 �5.55 �0.48 �5.48 �0.55

10 �5.67 �5.68 0.01 �5.69 0.01

11 �5.02 �5.49 0.47 �5.55 0.53

12 �5.17 �4.64 �0.54 �4.49 �0.68

13 �4.71 �4.98 0.28 �5.11 0.41

15 �4.40 �4.41 0.01 �4.42 0.02

16 �4.42 �4.69 0.28 �4.82 0.40

17 �5.68 �5.10 �0.58 �4.08 �1.60

18 �4.85 �5.41 0.56 �5.66 0.81

19 �5.38 �5.14 �0.24 �5.00 �0.38

20 �4.43 �5.02 0.59 �5.10 0.67

21 �4.34 �5.07 0.74 �5.17 0.83

23 �5.03 �5.30 0.28 �5.69 0.66

24 �5.93 �5.09 �0.83 �4.81 �1.12

25 �6.16 �5.51 �0.65 �5.41 �0.75

26 �6.36 �5.60 �0.77 �5.40 �0.96

27 �6.07 �5.28 �0.79 �4.74 �1.33

29 �5.07 �5.35 0.28 �5.38 0.31

30 �4.74 �4.92 0.19 �5.16 0.42

31 �5.65 �4.88 �0.77 �4.70 �0.95

33 �5.49 �5.54 0.05 �5.60 0.11

35 �4.48 �5.12 0.64 �5.23 0.75

37 �3.00 �3.19 0.19 �3.34 0.34

39 �3.00 �2.92 �0.08 �2.90 �0.10

43 �3.00 �3.04 0.04 �3.07 0.07

50 �3.00 �3.16 0.16 �3.21 0.21

51 �3.00 �3.10 0.10 �3.17 0.17

52 �3.00 �2.57 �0.43 �2.36 �0.64

53 �3.00 �2.94 �0.06 �2.88 �0.12

Test set

6 �5.20 �4.65 �0.55

14 �5.05 �4.50 �0.55

28 �6.61 �5.72 �0.89

22 �5.15 �5.02 �0.13

32 �5.55 �5.47 �0.08

34 �4.65 �5.81 1.16

Table 7
The training-test model 3: the predicted activities and residues of 36 compounds in

the training set and 6 compounds in the test set.

Compd. # log IC50 Non-validated Cross-validated

Predicted Error Predicted Error

Training set

1 �4.94 �5.02 0.08 �5.03 0.09

2 �4.47 �5.21 0.74 �5.34 0.87

3 �5.70 �5.61 �0.09 �5.60 �0.10

4 �4.91 �5.47 0.56 �5.62 0.70

5 �5.90 �5.78 �0.12 �5.75 �0.15

7 �5.76 �5.66 �0.10 �5.65 �0.11

8 �4.35 �4.96 0.61 �5.08 0.73

9 �6.04 �5.57 �0.47 �5.50 �0.54

10 �5.67 �5.74 0.06 �5.76 0.09

11 �5.02 �5.55 0.53 �5.61 0.59

12 �5.17 �4.63 �0.55 �4.48 �0.69

13 �4.71 �4.97 0.27 �5.10 0.40

15 �4.40 �4.36 �0.04 �4.35 �0.05

16 �4.42 �4.76 0.34 �4.91 0.49

17 �5.68 �5.04 �0.64 �3.92 �1.76

18 �4.85 �5.46 0.61 �5.76 0.91

19 �5.38 �5.19 �0.19 �5.08 �0.30

20 �4.43 �5.02 0.59 �5.10 0.67

21 �4.34 �5.04 0.70 �5.13 0.79

23 �5.03 �5.37 0.35 �5.84 0.82

24 �5.93 �5.02 �0.90 �4.73 �1.20

25 �6.16 �5.60 �0.56 �5.53 �0.63

26 �6.36 �5.64 �0.72 �5.46 �0.90

27 �6.07 �5.42 �0.66 �5.02 �1.05

28 �6.61 �5.94 �0.66 �5.73 �0.87

30 �4.74 �4.98 0.24 �5.29 0.55

31 �5.65 �4.87 �0.78 �4.69 �0.96

33 �5.49 �5.66 0.17 �5.87 0.38

35 �4.48 �5.23 0.75 �5.34 0.86

37 �3.00 �3.19 0.19 �3.34 0.34

39 �3.00 �2.91 �0.09 �2.88 �0.12

43 �3.00 �3.10 0.10 �3.18 0.18

50 �3.00 �3.20 0.20 �3.26 0.26

51 �3.00 �3.00 0.00 �3.00 0.00

52 �3.00 �2.60 �0.40 �2.41 �0.59

53 �3.00 �2.85 �0.15 �2.71 �0.29

Test set

6 �5.20 �4.62 �0.58

14 �5.05 �4.48 �0.57

22 �5.15 �5.11 �0.04

29 �5.07 �5.41 0.34

32 �5.55 �5.58 0.03

34 �4.65 �5.88 1.23
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3.4. Binary QSAR models to classify active and inactive compounds

The availability of confirmed active and inactive compounds
provides an opportunity to develop binary models for classifying
active cathepsin B inhibitors from inactive compounds. Although
modern HTS technology allows rapid screening of tens of
thousands of compounds in a matter of a few days, such
experiments are expensive, and can hardly cover all chemical
space. In silico screening helps to eliminate potentially inactive
compounds and to build compound libraries with enriched
promising lead candidates. Thus in silico screening is a cost
efficient strategy to facilitate the identification of potential drug
candidates. Such pre-screening provides a way to eliminate
potentially inactive molecules in novel compound design for
synthesis and make the limited experimental resources available
for screening only the potentially active molecules.

The same nine descriptors used in the continuous models were
also used to build binary QSAR models relying on the method
developed by the Chemical Computing Group which was
implemented as a module in MOE [42,43]. The binary QSAR
model was developed as an economic QSAR model to be used
distinguish active vs. inactive compounds in HTS experiments to
assist model drug development. All binary models were built using
the binary method module of MOE [42,43]. Similarly to the process
of continuous model construction, the ‘‘all binary model’’ was first
built with all 86 compounds to examine the predictability of the
model for the ‘‘inside’’ compounds, the compounds used to build a
model, and followed by validations using the LOO method and
three training-test sets to examine the predictability and robust-
ness of the QSAR models for ‘‘outside’’ compounds. The predicted
results for the all binary model are listed in Table 9 and the
statistical results are listed in Table 13. All 86 compounds, except
for four active and three inactive ones, were predicted correctly
with this non-validated model (Table 9). The prediction accuracies
(Table 13) for all compounds are 0.919, and for active and inactive
compounds are 0.886 and 0.941 respectively. This demonstrates
the strong classification power of this model for discriminating
inactive compounds from active compounds. In addition, four
cross-validated models were built, one from LOO and three from
the training-test-set method. In the latter three models, the
compounds were randomly split into training set (80 compounds)
and test set (6 compounds). The four models were designated as



Table 8
Summary of statistics and relative importance of descriptors for three fitting and 3

training-test QSAR models.

Model All

model

3 Outlier

model

Training-

test 1

Training-

test 2

Training-

test 3

Training set 42 39 36 36 36

Test set 6 6 6

r2,* 0.771 0.821 0.804 0.804 0.807

q2 0.608 0.683 0.637 0.647 0.675

RMSE 0.483 0.424 0.460 0.459 0.473

Cross-RMSE 0.546 0.574 0.639 0.627 0.629

Relative importance of descriptors

Apol 1.00 1.00 1.00 1.00 1.00

MR 0.118 0.295 0.196 0.136 0.131

Esol 0.045 0.109 0.022 0.023 0.017

log P(o/w) 0.011 0.054 0.026 0.019 0.012

Dipole 0.093 0.260 0.025 0.018 0.070

SApol 0.144 0.207 0.111 0.162 0.180

SA 0.222 0.228 0.245 0.245 0.273

Vol 0.608 0.651 0.562 0.586 0.605

Nacc�don 0.0208 0.092 0.045 0.034 0.022

* r2: the square of the regression (non-cross-validated) correlation coefficient. q2:

the square of the cross-validated correlation coefficient. Linear model: log I-

C50 = a1�Apol + a2�MR + a3�Esl + a4�log P(o/

w) + a5�Dipole + a6�SApol + a7�SA + a8�Vol + a9�Nacc�don, a1–a9 are the linear factors with

different values in each model which were optimized in each regression.

Table 9 (Continued )

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

25 1 1 0 1 0

26 1 1 0 1 0

27 1 0 1 0 1

28 1 1 0 1 0

29 1 1 0 1 0

30 1 1 0 1 0

31 1 1 0 1 0

32 1 1 0 1 0

33 1 0 1 0 1

34 1 0 1 0 1

35 1 1 0 1 0

36 0 0 0 0 0

37 0 0 0 0 0

38 0 0 0 0 0

39 0 0 0 0 0

40 0 0 0 0 0

41 0 0 0 0 0

42 0 0 0 0 0

43 0 0 0 0 0

44 0 0 0 0 0

45 0 0 0 0 0

46 0 0 0 0 0

47 0 0 0 0 0

48 0 0 0 0 0

49 0 0 0 0 0

50 0 0 0 0 0

51 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

54 0 0 0 0 0

55 0 0 0 0 0

56 0 0 0 0 0

57 0 0 0 0 0

58 0 0 0 0 0

59 0 0 0 0 0

60 0 0 0 0 0

61 0 0 0 0 0

62 0 0 0 0 0

63 0 0 0 0 0

64 0 0 0 0 0

65 0 0 0 0 0

66 0 0 0 0 0

67 0 0 0 0 0
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‘‘binary model’’, ‘‘bin. train-test 1’’, ‘‘bin. train-test 2’’, and ‘‘bin.
train-test 3’’, and the predicted results from these four cross-
validated models are listed in Tables 9–12. The three training-test
models produced consistent results that are similar to those from
the LOO-based binary model. For the 80 training set compounds,
the non-validated prediction accuracies for all compounds are
0.906–9.25, and for active and inactive compounds are 0.906 and
0.938, respectively. The cross-validated prediction accuracies for
all compounds are 0.900, active and inactive compounds are 0.844
and 0.938, respectively. For the six test compounds, five
compounds were predicted correctly, the prediction accuracies
for the randomly selected test compounds in all three training-test
models are 0.833 (Table 13). These validated models clearly
demonstrated their abilities to distinguish active vs. inactive
Table 9
Binary model: the predicted active vs. inactive for all active and inactive compounds

predicted by two statistic methods based on the binary QSAR model.

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

1 1 1 0 1 0

2 1 1 0 1 0

3 1 1 0 1 0

4 1 1 0 1 0

5 1 1 0 1 0

6 1 1 0 1 0

7 1 1 0 1 0

8 1 1 0 1 0

9 1 1 0 1 0

10 1 1 0 0 1

11 1 1 0 1 0

12 1 1 0 1 0

13 1 1 0 1 0

14 1 1 0 1 0

15 1 1 0 1 0

16 1 1 0 1 0

17 1 1 0 1 0

18 1 1 0 1 0

19 1 1 0 1 0

20 1 1 0 1 0

21 1 1 0 1 0

22 1 0 1 0 1

23 1 1 0 1 0

24 1 1 0 1 0

68 0 0 0 0 0

69 0 0 0 0 0

70 0 0 0 0 0

71 0 0 0 0 0

72 0 0 0 0 0

73 0 1 �1 1 �1

74 0 0 0 0 0

75 0 0 0 0 0

76 0 0 0 0 0

77 0 1 �1 1 �1

78 0 1 �1 1 �1

79 0 0 0 0 0

80 0 0 0 0 0

81 0 0 0 0 0

82 0 0 0 0 0

83 0 0 0 0 0

84 0 0 0 0 0

85 0 0 0 0 0

86 0 0 0 0 0
compounds with high efficiency and accuracy, which indicates
their strong potential for in silico screening of small molecules.

It is noted that the prediction accuracies for active compounds
were slightly, but consistently, lower than those for the inactive
compounds. Such phenomenon could arise from the unbalanced
nature of the data set regarding to bioactivity classes (active and
inactive in this work). The larger population of inactive compounds
over that of the active ones shifts the splitting point used to
determine the active vs. inactive to the active side. Such shift
results in more active compounds at the border line of being



Table 10
Binary training-test model 1: the predicted active vs. inactive for training set

compounds and the predicted results for the tested compounds.

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

1 1 1 0 1 0

2 1 1 0 1 0

4 1 1 0 1 0

5 1 1 0 1 0

6 1 1 0 1 0

7 1 1 0 1 0

8 1 1 0 1 0

9 1 1 0 1 0

10 1 1 0 1 0

11 1 1 0 1 0

12 1 1 0 1 0

14 1 1 0 1 0

15 1 1 0 1 0

16 1 1 0 1 0

17 1 1 0 1 0

18 1 1 0 1 0

19 1 1 0 1 0

20 1 1 0 1 0

21 1 1 0 1 0

22 1 0 1 0 1

23 1 1 0 1 0

24 1 1 0 0 1

25 1 1 0 1 0

26 1 1 0 1 0

27 1 0 1 0 1

28 1 1 0 1 0

30 1 1 0 1 0

31 1 1 0 1 0

32 1 1 0 1 0

33 0 0 1 0 1

34 0 1 0 0 1

35 0 1 0 1 0

36 0 0 0 0 0

37 0 0 0 0 0

38 0 0 0 0 0

39 0 0 0 0 0

40 0 0 0 0 0

42 0 0 0 0 0

43 0 0 0 0 0

44 0 0 0 0 0

45 0 0 0 0 0

46 0 0 0 0 0

47 0 0 0 0 0

48 0 0 0 0 0

49 0 0 0 0 0

50 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

54 0 0 0 0 0

55 0 0 0 0 0

56 0 0 0 0 0

57 0 0 0 0 0

58 0 0 0 0 0

59 0 0 0 0 0

60 0 0 0 0 0

61 0 0 0 0 0

62 0 0 0 0 0

63 0 0 0 0 0

64 0 0 0 0 0

65 0 0 0 0 0

66 0 0 0 0 0

67 0 0 0 0 0

68 0 0 0 0 0

69 0 0 0 0 0

70 0 0 0 0 0

71 0 0 0 0 0

72 0 0 0 0 0

73 0 1 �1 1 �1

74 0 0 0 0 0

75 0 0 0 0 0

76 0 0 0 0 0

Table 10 (Continued )

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

77 0 1 �1 1 �1

78 0 1 �1 1 �1

79 0 0 0 0 0

80 0 0 0 0 0

81 0 0 0 0 0

82 0 0 0 0 0

83 0 0 0 0 0

84 0 0 0 0 0

86 0 0 0 0 0

Test set

3 1 1 0

13 1 0 1

29 1 1 0

41 0 0 0

51 0 0 0

85 0 0 0

Table 11
Binary training-test model 2: the predicted active vs. inactive for training set

compounds and the predicted results for the tested compounds.

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

1 1 1 0 1 0

2 1 1 0 1 0

3 1 1 0 1 0

5 1 1 0 1 0

6 1 1 0 1 0

7 1 1 0 1 0

8 1 1 0 1 0

9 1 1 0 1 0

10 1 1 0 0 1

11 1 1 0 1 0

12 1 1 0 1 0

13 1 1 0 1 0

14 1 1 0 1 0

15 1 1 0 1 0

16 1 1 0 1 0

17 1 1 0 1 0

19 1 1 0 1 0

20 1 1 0 1 0

21 1 1 0 1 0

22 1 0 1 0 1

23 1 1 0 1 0

24 1 1 0 1 0

25 1 1 0 1 0

26 1 1 0 1 0

27 1 0 1 0 1

28 1 1 0 1 0

29 1 1 0 1 0

30 1 1 0 1 0

32 1 1 0 1 0

33 0 0 1 0 1

34 0 1 0 0 1

35 0 1 0 1 0

36 0 0 0 0 0

37 0 0 0 0 0

38 0 0 0 0 0

39 0 0 0 0 0

40 0 0 0 0 0

41 0 0 0 0 0

42 0 0 0 0 0

43 0 0 0 0 0

44 0 0 0 0 0

45 0 0 0 0 0

46 0 0 0 0 0
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Table 11 (Continued )

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

48 0 0 0 0 0

49 0 0 0 0 0

50 0 0 0 0 0

51 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

54 0 0 0 0 0

55 0 0 0 0 0

56 0 0 0 0 0

57 0 0 0 0 0

58 0 0 0 0 0

59 0 0 0 0 0

60 0 0 0 0 0

61 0 0 0 0 0

62 0 0 0 0 0

63 0 0 0 0 0

65 0 0 0 0 0

66 0 0 0 0 0

67 0 0 0 0 0

68 0 0 0 0 0

69 0 0 0 0 0

70 0 0 0 0 0

71 0 0 0 0 0

72 0 0 0 0 0

73 0 1 �1 1 �1

74 0 0 0 0 0

75 0 0 0 0 0

76 0 0 0 0 0

77 0 1 �1 1 �1

78 0 1 �1 1 �1

80 0 0 0 0 0

81 0 0 0 0 0

82 0 0 0 0 0

83 0 0 0 0 0

84 0 0 0 0 0

85 0 0 0 0 0

86 0 0 0 0 0

Test set

4 1 1 0

18 1 0 1

31 1 1 0

47 0 0 0

64 0 0 0

79 0 0 0

Table 12
Binary training-test model 3: the predicted active vs. inactive for training set

compounds and the predicted results for the tested compounds.

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

1 1 1 0 1 0

2 1 1 0 1 0

3 1 1 0 1 0

4 1 1 0 1 0

6 1 1 0 1 0

7 1 1 0 1 0

8 1 1 0 1 0

9 1 1 0 1 0

10 1 1 0 0 1

11 1 1 0 1 0

12 1 1 0 1 0

13 1 1 0 1 0

15 1 1 0 1 0

16 1 1 0 1 0

17 1 1 0 1 0

18 1 1 0 1 0

Table 12 (Continued )

Compd. # Active Non-validated Cross-validated

Predicted Error Predicted Error

Training

set

19 1 1 0 1 0

20 1 1 0 0 1

21 1 1 0 1 0

23 1 1 0 1 0

24 1 1 0 1 0

25 1 1 0 1 0

26 1 1 0 1 0

27 1 0 1 0 1

28 1 1 0 1 0

29 1 1 0 1 0

30 1 0 0 1 0

31 1 1 0 1 0

32 1 1 0 1 0

33 0 0 1 0 1

34 0 1 1 0 1

35 0 1 0 1 0

36 0 0 0 0 0

37 0 0 0 0 0

38 0 0 0 0 0

39 0 0 0 0 0

40 0 0 0 0 0

41 0 0 0 0 0

42 0 0 0 0 0

43 0 0 0 0 0

44 0 0 0 0 0

45 0 0 0 0 0

46 0 0 0 0 0

47 0 0 0 0 0

48 0 0 0 0 0

49 0 0 0 0 0

50 0 0 0 0 0

51 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

54 0 0 0 0 0

56 0 0 0 0 0

57 0 0 0 0 0

58 0 0 0 0 0

59 0 0 0 0 0

60 0 0 0 0 0

61 0 0 0 0 0

62 0 0 0 0 0

63 0 0 0 0 0

64 0 0 0 0 0

65 0 0 0 0 0

66 0 0 0 0 0

68 0 0 0 0 0

69 0 0 0 0 0

70 0 0 0 0 0

71 0 0 0 0 0

72 0 0 0 0 0

73 0 1 �1 1 �1

74 0 0 0 0 0

75 0 0 0 0 0

77 0 1 �1 1 �1

78 0 1 �1 1 �1

79 0 0 0 0 0

80 0 0 0 0 0

81 0 0 0 0 0

82 0 0 0 0 0

83 0 0 0 0 0

84 0 0 0 0 0

85 0 0 0 0 0

86 0 0 0 0 0

Test set

5 1 1 0

14 1 1 0

22 1 0 1

55 0 0 0

67 0 0 0

76 0 0 0
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Table 13
Summary of statistics and importance of descriptors for the binary model and three training-test binary models.

Model Binary model Bin. train-test 1 Bin. train-test 2 Bin. train-test 3

Training set 86 80 80 80

Active 35 32 32 32

Inactive 51 48 48 48

Test set 0 6 6 6

Tested accuracy 1.00 0.833 0.833

Total accuracy 0.919 0.906 0.925 0.925

p-value* 1.28e�13 4.15e�13 4.14e�13 4.14e�13

Accuracy on active 0.886 0.906 0.906 0.906

Accuracy on inactive 0.941 0.938 0.938 0.938

p-value 8.02e�13 2.63e�12 2.63e�12 2.63e�12

Cross-validated results

X-validated total accuracy 0.907 0.900 0.900 0.900

p-value 8.44e�13 1.86e�11 1.86e�11 1.86e�11

X-validated accuracy on active 0.857 0.844 0.844 0.844

X-validated accuracy on inactive 0.941 0.938 0.938 0.938

p-value 4.33e�12 7.99e�11 7.99e�11 7.99e�11

Relative importance of descriptors

Apol 0.127 0.127 0.129 0.141

MR 0.088 0.085 0.100 0.102

Esol 0.137 0.157 0.141 0.158

log P(o/w) 0.049 0.067 0.059 0.050

Dipole 0.111 0.131 0.100 0.105

SApol 0.198 0.186 0.194 0.208

SA 0.162 0.162 0.164 0.171

Vol 0.138 0.145 0.145 0.146

Nacc�don 0.055 0.072 0.064 0.052

*p-value: significance of statistics. X-validated: cross-validated.
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classified as ‘‘inactive’’. To solve the problem, one could design a
weighting schema to ‘‘overestimate’’ the type of compounds that
are underrepresented in the data set. In many cases, however, such
unbalance would not cause a severe effect on the application of the
method when the focus is to select a molecule with a given
property, such as eliminating inactive molecules to further develop
active compounds in designing cathepsin B inhibitors.

4. Conclusion

The availability of molecular structures and their inhibition
activity against cathepsin B identified through HTS experiments
provided an opportunity to conduct a structure–activity relation-
ship study to facilitate chemical probe development, and potential
drug development for related disease treatment. The ‘‘active’’
conformers of active compounds were modeled using docking
simulations, and the conformations of the inactive compounds
were determined based on flexible alignment of each compound to
the 3D conformer of the original ligand (DPN) in the crystal
structure complex. Conventional continuous models were built for
predicting cathepsin B inhibition activity of active small molecules.
Binary models were constructed for the ‘‘active’’ vs. ‘‘inactive’’
classification. Nine molecular and physicochemical properties
were calculated based on 3D conformational information, and
were selected and used as descriptors to build the QSAR models.

The continuous models demonstrated reasonable correlations
between the predicted and the observed activities with non-
validated (r2) and cross-validated (q2) regression correlation
coefficients of 0.771 and 0.608 for all compounds, and 0.821
and 0.683 for the compounds excluding 3 outliers, respectively.
The model showed strong predictability with reasonable predicted
error rates over the entire test set and across several models.
Almost all the 42 compounds used in the model have predicted
errors smaller than one unit, while the majority of the compounds
have predicted errors less than a half unit from both the non-
validated and cross-validated results. The predictability of the
models were further validated using the three training-test
methods with the results that the predicted errors for all test
compounds are smaller than one unit, while a significant fraction
of them are less than a half unit in all three models together.

The consistent performance of the four cross-validated models
demonstrated that the models are robust in predicting the
inhibition activities of small molecules for the biological system
of cathepsin B. The success of the QSAR models proves that the
modeling approach based on docking conformation determination
and the nine physicochemical properties may be a promising
method to predict biological activity of a small molecule for drug
development based on the knowledge derived from the identified
cathepsin B inhibitors.

Furthermore, binary models were built for classifying cathepsin
B inhibition activities, e.g. active vs. inactive categories. The
statistical results showed that the models have demonstrated
excellent performance with the prediction accuracies for bioactiv-
ity classes of 0.919, 0.886, and 0.941 for all 86 tested, 35 active, and
51 inactive compounds in the non-validated binary models,
respectively. All compounds, except for four active and three
inactive compounds, were correctly predicted by the non-
validated fitting model. Similar prediction results were obtained
with the cross-validated model. With the three training-test
models, the bioactivity categories for the five out of six tested
compounds were predicted correctly, with a prediction accuracy of
0.833. The factor that all of these models yielded high accuracies
upon the prediction of cathepsin B inhibition activity demonstrates
that such models enable the classification of active vs. inactive
inhibitory compounds with high accuracies. The robustness and
feasibility of this binary method indicates its potential in several
applications to facilitate molecular design and drug development.
In particular, this approach may prove highly efficient for pre-
screening in silico designed compounds to optimize the biological
activities based on the information of known bioactive com-
pounds. Such in silico pre-screening may be performed to filter out
the ones that are unlikely to have the desired biological activities,
thus to allow the limited efforts to be focused on the highly
promising candidates. With such advantages, we anticipate the



Z. Zhou et al. / Journal of Molecular Graphics and Modelling 28 (2010) 714–727 727
utilization of the combination of the continuous and binary
classification models will potentially benefit modern drug
development for therapeutic purposes.
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